Pagina de inicio
/
Física
/
4. Two spheres with charges of +6.00times 10^-6C and -5.0times 10^-6C attract each other with a force of 7.0times 10^-2 Newto r=sqrt (k(vert q_(1)q_(2)vert )/(F)) Determine the separation distance between the two objects. 5.00 m B. 1.96 m C 2.99 m 3.86 m

Problemas

4.
Two spheres with charges of
+6.00times 10^-6C and
-5.0times 10^-6C
attract each other with a force of
7.0times 10^-2 Newto
r=sqrt (k(vert q_(1)q_(2)vert )/(F))
Determine the separation
distance between the two objects.
5.00 m
B. 1.96 m
C 2.99 m
3.86 m

4. Two spheres with charges of +6.00times 10^-6C and -5.0times 10^-6C attract each other with a force of 7.0times 10^-2 Newto r=sqrt (k(vert q_(1)q_(2)vert )/(F)) Determine the separation distance between the two objects. 5.00 m B. 1.96 m C 2.99 m 3.86 m

Solución

avatar
Antoniomaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.7 (284 votos)

Responder

To determine the separation distance between the two charged spheres, we can use the formula for the force between two charged objects:<br /><br />$F = k \frac{\vert q_1 q_2 \vert}{r^2}$<br /><br />where:<br />- $F$ is the force between the objects (in Newtons)<br />- $k$ is the Coulomb constant ($8.99 \times 10^9 \, \text{N m}^2/\text{C}^2$)<br />- $q_1$ and $q_2$ are the charges of the objects (in Coulombs)<br />- $r$ is the separation distance between the objects (in meters)<br /><br />Given:<br />- $F = 7.0 \times 10^{-2} \, \text{N}$<br />- $q_1 = +6.00 \times 10^{-6} \, \text{C}$<br />- $q_2 = -5.0 \times 10^{-6} \, \text{C}$<br /><br />We need to solve for $r$:<br /><br />$7.0 \times 10^{-2} = 8.99 \times 10^9 \frac{\vert 6.00 \times 10^{-6} \times -5.0 \times 10^{-6} \vert}{r^2}$<br /><br />$r^2 = 8.99 \times 10^9 \frac{\vert 6.00 \times 10^{-6} \times -5.0 \times 10^{-6} \vert}{7.0 \times 10^{-2}}$<br /><br />$r^2 = 8.99 \times 10^9 \frac{30.0 \times 10^{-12}}{7.0 \times 10^{-2}}$<br /><br />$r^2 = 8.99 \times 10^9 \times 4.29 \times 10^{-10}$<br /><br />$r^2 = 3.86 \times 10^{-1}$<br /><br />$r = \sqrt{3.86 \times 10^{-1}}$<br /><br />$r \approx 0.62 \, \text{m}$<br /><br />Therefore, the separation distance between the two charged spheres is approximately 0.62 meters.
Haz clic para calificar: