Problemas

1)) 8A Find (fcirc g)(0) f(x)=x+2 g(x)=6x (fcirc g)(0)= square
Solución

Adriánmaestro · Tutor durante 5 años

4.6 (156 votos)
Responder
To find $(f\circ g)(0)$, we need to evaluate the composition of the functions $f$ and $g$ at $x=0$.<br /><br />Given:<br />$f(x) = x + 2$<br />$g(x) = 6x$<br /><br />The composition of the functions $f$ and $g$ is defined as $(f\circ g)(x) = f(g(x))$.<br /><br />To find $(f\circ g)(0)$, we need to evaluate $f(g(0))$.<br /><br />Step 1: Evaluate $g(0)$.<br />$g(0) = 6 \cdot 0 = 0$<br /><br />Step 2: Evaluate $f(g(0))$.<br />$f(g(0)) = f(0) = 0 + 2 = 2$<br /><br />Therefore, $(f\circ g)(0) = 2$.
Haz clic para calificar: