Problemas

6. (show your work and bubble the correct answer) Solve the equation ((3^x)^frac (1)/(2))(3^(1)/(2))=3 A x=3 B x=-1 C x=(49)/(4) D x=1
Solución

Francomaestro · Tutor durante 5 años

4.3 (324 votos)
Responder
To solve the equation $\frac {(3^{x})^{\frac {1}{2}}}{3^{\frac {1}{2}}}=3$, we can start by simplifying the expression on the left side of the equation.<br /><br />First, let's simplify the numerator:<br />$(3^{x})^{\frac {1}{2}} = 3^{\frac {x}{2}}$<br /><br />Now, let's simplify the denominator:<br />$3^{\frac {1}{2}}$<br /><br />So, the equation becomes:<br />$\frac {3^{\frac {x}{2}}}{3^{\frac {1}{2}}} = 3$<br /><br />To divide two numbers with the same base, we subtract their exponents:<br />$3^{\frac {x}{2} - \frac {1}{2}} = 3$<br /><br />Since the bases are the same, we can equate the exponents:<br />$\frac {x}{2} - \frac {1}{2} = 1$<br /><br />Now, let's solve for $x$:<br />$\frac {x}{2} = 1 + \frac {1}{2}$<br />$\frac {x}{2} = \frac {3}{2}$<br />$x = 3$<br /><br />Therefore, the correct answer is A) $x=3$.
Haz clic para calificar: