Problemas

Multiple Choice 10 points 2KClO_(3)... 2KCl+3O_(2) If you have 12 moles of KClO_(3) how many moles of O_(2) do you have? 18 moles 16 moles 36 moles 24 moles
Solución

Georginaprofessionell · Tutor durante 6 años

4.2 (231 votos)
Responder
A
Explicar
The balanced chemical equation given is \(2KClO_{3} \rightarrow 2KCl + 3O_{2}\). This equation tells us that 2 moles of \(KClO_{3}\) decompose to produce 3 moles of \(O_{2}\). Therefore, the ratio of \(KClO_{3}\) to \(O_{2}\) is 2:3. If we have 12 moles of \(KClO_{3}\), we can use this ratio to find the number of moles of \(O_{2}\) produced. Setting up a proportion, we get \(\frac{2 \text{ moles } KClO_{3}}{3 \text{ moles } O_{2}} = \frac{12 \text{ moles } KClO_{3}}{x \text{ moles } O_{2}}\). Solving for \(x\), we find that \(x = 18\) moles of \(O_{2}\). Therefore, the correct answer is 18 moles.
Haz clic para calificar: