Problemas

An arrow with a mass of 0.07Kg has a kinetic energy of 196.875J. What is the velocity of the arrow? a 332m/s 84.3m/s C 75m/s d 13.78m/s
Solución

Fernandoélite · Tutor durante 8 años

4.4 (284 votos)
Responder
To find the velocity of the arrow, we can use the formula for kinetic energy:<br /><br />\[ KE = \frac{1}{2}mv^2 \]<br /><br />where \( KE \) is the kinetic energy, \( m \) is the mass, and \( v \) is the velocity.<br /><br />Given:<br />- \( KE = 196.875 \, J \)<br />- \( m = 0.07 \, kg \)<br /><br />We need to solve for \( v \):<br /><br />\[ 196.875 = \frac{1}{2} \times 0.07 \times v^2 \]<br /><br />First, isolate \( v^2 \):<br /><br />\[ 196.875 = 0.035 \times v^2 \]<br /><br />\[ v^2 = \frac{196.875}{0.035} \]<br /><br />\[ v^2 = 5614.29 \]<br /><br />Now, take the square root of both sides to solve for \( v \):<br /><br />\[ v = \sqrt{5614.29} \]<br /><br />\[ v \approx 75.0 \, m/s \]<br /><br />So, the correct answer is:<br /><br />c) \( 75 \, m/s \)
Haz clic para calificar: