Problemas

A gas is at a temperature of 300 K and occupies a volume of 2 L. If the temperature is increased to 600 K while keeping the pressure constant, what will be the new volume? A. 41 B. 2L C. 3L D. 1L
Solución

Valentinamaestro · Tutor durante 5 años

4.6 (231 votos)
Responder
To solve this problem, we can use Charles's Law, which states that the volume of a gas is directly proportional to its temperature (in Kelvin) when the pressure is constant. The formula for Charles's Law is:<br /><br />\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \]<br /><br />Where:<br />- \( V_1 \) is the initial volume<br />- \( T_1 \) is the initial temperature<br />- \( V_2 \) is the final volume<br />- \( T_2 \) is the final temperature<br /><br />Given:<br />- \( V_1 = 2 \, \text{L} \)<br />- \( T_1 = 300 \, \text{K} \)<br />- \( T_2 = 600 \, \text{K} \)<br /><br />We need to find \( V_2 \).<br /><br />Rearranging the formula to solve for \( V_2 \):<br /><br />\[ V_2 = V_1 \times \frac{T_2}{T_1} \]<br /><br />Substituting the given values:<br /><br />\[ V_2 = 2 \, \text{L} \times \frac{600 \, \text{K}}{300 \, \text{K}} \]<br /><br />\[ V_2 = 2 \, \text{L} \times 2 \]<br /><br />\[ V_2 = 4 \, \text{L} \]<br /><br />So, the new volume of the gas when the temperature is increased to 600 K while keeping the pressure constant is 4 L.<br /><br />The correct answer is:<br />A. 4L
Haz clic para calificar: