Problemas

POSSIBLE POINTS: 2C_(7)H_(6)O_(2)+15O_(2)arrow 14CO_(2)+6H_(2)O Philly reacted 120g of Benzoic acid with a surplus of Oxygen gas.If the reaction produced 60g of Carbon dioxide what was Philly's percent yield? 50% 45% 78% 20%
Solución

Ángelaélite · Tutor durante 8 años

4.5 (328 votos)
Responder
To calculate the percent yield, we use the formula:<br /><br />\[<br />\text{Percent Yield} = \left( \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \right) \times 100<br />\]<br /><br />### Step 1: Determine the molar mass of benzoic acid (\(C_7H_6O_2\)):<br />\[<br />\text{Molar Mass of } C_7H_6O_2 = (7 \times 12.01) + (6 \times 1.008) + (2 \times 16.00) = 84.07 + 6.048 + 32.00 = 122.12 \, \text{g/mol}<br />\]<br /><br />### Step 2: Calculate moles of benzoic acid reacted:<br />\[<br />\text{Moles of } C_7H_6O_2 = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{120 \, \text{g}}{122.12 \, \text{g/mol}} \approx 0.983 \, \text{mol}<br />\]<br /><br />### Step 3: Use stoichiometry to find the theoretical yield of \(CO_2\):<br />From the balanced equation:<br />\[<br />2C_7H_6O_2 + 15O_2 \rightarrow 14CO_2 + 6H_2O<br />\]<br />2 moles of \(C_7H_6O_2\) produce 14 moles of \(CO_2\). Therefore, the mole ratio is:<br />\[<br />\frac{14 \, \text{mol CO}_2}{2 \, \text{mol } C_7H_6O_2} = 7 \, \text{mol CO}_2 \, \text{per mol } C_7H_6O_2<br />\]<br /><br />Using this ratio:<br />\[<br />\text{Moles of } CO_2 = 0.983 \, \text{mol } C_7H_6O_2 \times 7 \, \text{mol CO}_2/\text{mol } C_7H_6O_2 = 6.881 \, \text{mol CO}_2<br />\]<br /><br />### Step 4: Convert moles of \(CO_2\) to grams:<br />The molar mass of \(CO_2\) is:<br />\[<br />\text{Molar Mass of } CO_2 = (12.01) + (2 \times 16.00) = 44.01 \, \text{g/mol}<br />\]<br /><br />Theoretical mass of \(CO_2\):<br />\[<br />\text{Mass of } CO_2 = 6.881 \, \text{mol} \times 44.01 \, \text{g/mol} \approx 302.8 \, \text{g}<br />\]<br /><br />### Step 5: Calculate the percent yield:<br />The actual yield of \(CO_2\) is given as 60 g. Using the percent yield formula:<br />\[<br />\text{Percent Yield} = \left( \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \right) \times 100 = \left( \frac{60}{302.8} \right) \times 100 \approx 19.8\%<br />\]<br /><br />Rounding to the nearest whole number:<br />\[<br />\text{Percent Yield} \approx 20\%<br />\]<br /><br />### Final Answer:<br />**20%**
Haz clic para calificar: