Pagina de inicio
/
Matemáticas
/
Multiply. -5ab(xa^2+ya^3-8) -5ab(xa^2+ya^3-8)= square

Problemas

Multiply.
-5ab(xa^2+ya^3-8)
-5ab(xa^2+ya^3-8)= square

Multiply. -5ab(xa^2+ya^3-8) -5ab(xa^2+ya^3-8)= square

Solución

avatar
Ramonaprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
3.9 (207 votos)

Responder

To multiply the expression \(-5ab(xa^2 + ya^3 - 8)\), we need to distribute \(-5ab\) to each term inside the parentheses.<br /><br />Let's break it down step by step:<br /><br />1. Distribute \(-5ab\) to \(xa^2\):<br /> \[<br /> -5ab \cdot xa^2 = -5a^3b \cdot x = -5a^3bx<br /> \]<br /><br />2. Distribute \(-5ab\) to \(ya^3\):<br /> \[<br /> -5ab \cdot ya^3 = -5a^4b \cdot y = -5a^4by<br /> \]<br /><br />3. Distribute \(-5ab\) to \(-8\):<br /> \[<br /> -5ab \cdot (-8) = 40ab<br /> \]<br /><br />Now, combine all these results:<br />\[<br />-5ab(xa^2 + ya^3 - 8) = -5a^3bx - 5a^4by + 40ab<br />\]<br /><br />So, the final answer is:<br />\[<br />-5ab(xa^2 + ya^3 - 8) = -5a^3bx - 5a^4by + 40ab<br />\]
Haz clic para calificar: