Problemas

The volume of a gas is 0.450 L when its pressure is 1.00 atm. If the temperature of the gas does not change what is the pressure when its volume is changed to 2.00 L? Use P_(1)V_(1)=P_(2)V_(2) 0.225 atm 0,444 atm 2.25 atm 4.44 atm
Solución

Arlettemaestro · Tutor durante 5 años

4.7 (179 votos)
Responder
We are solving this using Boyle's Law: \( P_1V_1 = P_2V_2 \), where pressure and volume are inversely proportional when temperature is constant.<br /><br />### Given:<br />- \( P_1 = 1.00 \, \text{atm} \)<br />- \( V_1 = 0.450 \, \text{L} \)<br />- \( V_2 = 2.00 \, \text{L} \)<br />- \( P_2 = ? \)<br /><br />Rearranging the formula to solve for \( P_2 \):<br />\[<br />P_2 = \frac{P_1V_1}{V_2}<br />\]<br /><br />Substitute the values:<br />\[<br />P_2 = \frac{(1.00)(0.450)}{2.00} = \frac{0.450}{2.00} = 0.225 \, \text{atm}<br />\]<br /><br />### Final Answer:<br />**0.225 atm**
Haz clic para calificar: