Pagina de inicio
/
Matemáticas
/
9/25 2sqrt (27)+8sqrt (3)+5sqrt (8) 24sqrt (3)+5sqrt (8) 14sqrt (3)+10sqrt (2) 24sqrt (3)

Problemas

9/25
2sqrt (27)+8sqrt (3)+5sqrt (8)
24sqrt (3)+5sqrt (8)
14sqrt (3)+10sqrt (2)
24sqrt (3)

9/25 2sqrt (27)+8sqrt (3)+5sqrt (8) 24sqrt (3)+5sqrt (8) 14sqrt (3)+10sqrt (2) 24sqrt (3)

Solución

avatar
Sanchoprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
3.8 (319 votos)

Responder

To simplify the expression $2\sqrt{27} + 8\sqrt{3} + 5\sqrt{8}$, we need to simplify each square root term individually.<br /><br />First, let's simplify $\sqrt{27}$:<br />$\sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3}$<br /><br />Next, let's simplify $\sqrt{8}$:<br />$\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$<br /><br />Now, we can rewrite the expression as:<br />$2\sqrt{27} + 8\sqrt{3} + 5\sqrt{8} = 2(3\sqrt{3}) + 8\sqrt{3} + 5(2\sqrt{2})$<br /><br />Simplifying further, we get:<br />$6\sqrt{3} + 8\sqrt{3} + 10\sqrt{2} = 14\sqrt{3} + 10\sqrt{2}$<br /><br />Therefore, the simplified form of the expression $2\sqrt{27} + 8\sqrt{3} + 5\sqrt{8}$ is $14\sqrt{3} + 10\sqrt{2}$.
Haz clic para calificar: