Problemas

Find the slope of a line perp endicalar to each 15) y=-(5)/(3)x A) -(3)/(5) B) (3)/(5) C) (5)/(3) D) -(5)/(3)
Solución

Susanaavanzado · Tutor durante 1 años

4.6 (308 votos)
Responder
To find the slope of a line perpendicular to the given line \( y = -\frac{5}{3}x \), we need to take the negative reciprocal of the slope of the given line.<br /><br />The slope of the given line is \( -\frac{5}{3} \).<br /><br />The negative reciprocal of \( -\frac{5}{3} \) is \( \frac{3}{5} \).<br /><br />Therefore, the slope of the line perpendicular to \( y = -\frac{5}{3}x \) is \( \frac{3}{5} \).<br /><br />So, the correct answer is:<br />B) \( \frac{3}{5} \)
Haz clic para calificar: