Problemas

In simplest radical form, -5sqrt (75) is equivalent to: 5sqrt (3) -15sqrt (5) -25sqrt (3)
Solución

Antoniaexperto · Tutor durante 3 años

4.2 (240 votos)
Responder
To simplify the expression $-5\sqrt{75}$, we need to break down the number 75 into its prime factors.<br /><br />The prime factorization of 75 is $3 \times 5^2$. Therefore, we can rewrite the expression as:<br /><br />$-5\sqrt{75} = -5\sqrt{3 \times 5^2}$<br /><br />Using the property of square roots, we can separate the factors:<br /><br />$-5\sqrt{3 \times 5^2} = -5\sqrt{3} \times \sqrt{5^2}$<br /><br />Since $\sqrt{5^2} = 5$, we can simplify further:<br /><br />$-5\sqrt{3} \times \sqrt{5^2} = -5\sqrt{3} \times 5$<br /><br />Finally, we can multiply the constants:<br /><br />$-5\sqrt{3} \times 5 = -25\sqrt{3}$<br /><br />Therefore, the expression $-5\sqrt{75}$ is equivalent to $-25\sqrt{3}$.<br /><br />So, the correct answer is $-25\sqrt{3}$.
Haz clic para calificar: