Pagina de inicio
/
Física
/
The inverse variation equation shows the relationship between wavelength in meters, x.and frequency, y. y=(3times 10^8)/(x) What are the wavelengths for X-rays with frequency 3times 10^18 1times 10^-10m 3times 10^-10 3times 10^26 9times 10^26

Problemas

The inverse variation equation shows the relationship between wavelength in meters, x.and frequency, y.
y=(3times 10^8)/(x)
What are the wavelengths for X-rays with frequency 3times 10^18
1times 10^-10m
3times 10^-10
3times 10^26
9times 10^26

The inverse variation equation shows the relationship between wavelength in meters, x.and frequency, y. y=(3times 10^8)/(x) What are the wavelengths for X-rays with frequency 3times 10^18 1times 10^-10m 3times 10^-10 3times 10^26 9times 10^26

Solución

avatar
Alejandraavanzado · Tutor durante 1 años
expert verifiedVerificación de expertos
4.4 (243 votos)

Responder

To find the wavelength for X-rays with a frequency of $3\times 10^{18}$ Hz, we can use the inverse variation equation:<br /><br />$y = \frac{3\times 10^{8}}{x}$<br /><br />Given that $y = 3\times 10^{18}$ Hz, we can substitute this value into the equation and solve for $x$:<br /><br />$3\times 10^{18} = \frac{3\times 10^{8}}{x}$<br /><br />To solve for $x$, we can rearrange the equation:<br /><br />$x = \frac{3\times 10^{8}}{3\times 10^{18}}$<br /><br />Simplifying the expression:<br /><br />$x = \frac{10^{8}}{10^{18}}$<br /><br />$x = 10^{-10}$<br /><br />Therefore, the wavelength for X-rays with a frequency of $3\times 10^{18}$ Hz is $1\times 10^{-10}$ meters.
Haz clic para calificar: