Pagina de inicio
/
Química
/
a=(1)/(n)times 10.95,Mole5=5.465,Mults at STP in order to produce potassium nitride according to the following reaction? 6K+N_(2)arrow 2K_(3)N

Problemas

a=(1)/(n)times 10.95,Mole5=5.465,Mults at STP in
order to produce potassium nitride according to the following reaction?
6K+N_(2)arrow 2K_(3)N

a=(1)/(n)times 10.95,Mole5=5.465,Mults at STP in order to produce potassium nitride according to the following reaction? 6K+N_(2)arrow 2K_(3)N

Solución

avatar
Julietamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.7 (227 votos)

Responder

To determine the number of moles of potassium (K) needed to produce potassium nitride (K3N) at standard temperature and pressure (STP), we need to use the balanced chemical equation provided:<br /><br />\[ 6K + N_2 \rightarrow 2K_3N \]<br /><br />First, let's find the molar ratio between potassium (K) and potassium nitride (K3N). According to the balanced equation, 6 moles of potassium (K) are required to produce 2 moles of potassium nitride (K3N).<br /><br />Next, we need to calculate the number of moles of potassium (K) using the given molar mass of potassium (K) and the given mass of potassium (K):<br /><br />\[ a = \frac{1}{n} \times 10.95 \]<br /><br />Given:<br />- Molar mass of potassium (K) = 39.10 g/mol<br />- Mass of potassium (K) = 10.95 g<br /><br />First, calculate the number of moles of potassium (K):<br /><br />\[ \text{Number of moles of K} = \frac{\text{Mass of K}}{\text{Molar mass of K}} = \frac{10.95 \text{ g}}{39.10 \text{ g/mol}} = 0.28 \text{ moles of K} \]<br /><br />Now, use the molar ratio to find the number of moles of potassium nitride (K3N) produced:<br /><br />\[ \text{Number of moles of K3N} = \frac{\text{Number of moles of K}}{6} = \frac{0.28 \text{ moles of K}}{6} = 0.047 \text{ moles of K3N} \]<br /><br />Therefore, 0.047 moles of potassium nitride (K3N) will be produced when 0.28 moles of potassium (K) react with nitrogen (N2) at STP.
Haz clic para calificar: