Problemas

6. How many moles of NH_(3) can be produced from 15 moles of H_(2)
Solución

Elizabethveterano · Tutor durante 12 años

4.0 (223 votos)
Responder
To determine how many moles of \( NH_3 \) can be produced from 15 moles of \( H_2 \), we need to use the stoichiometric relationship from the balanced chemical equation for the production of ammonia:<br /><br />\[ N_2 + 3H_2 \rightarrow 2NH_3 \]<br /><br />From the equation, we see that 3 moles of \( H_2 \) produce 2 moles of \( NH_3 \).<br /><br />First, we calculate the ratio of \( H_2 \) to \( NH_3 \):<br /><br />\[ \frac{3 \text{ moles } H_2}{2 \text{ moles } NH_3} \]<br /><br />Now, we use this ratio to find out how many moles of \( NH_3 \) can be produced from 15 moles of \( H_2 \):<br /><br />\[ \text{Moles of } NH_3 = \frac{15 \text{ moles } H_2}{3 \text{ moles } H_2 / 2 \text{ moles } NH_3} \]<br /><br />\[ \text{Moles of } NH_3 = \frac{15}{3} \times 2 \]<br /><br />\[ \text{Moles of } NH_3 = 5 \times 2 \]<br /><br />\[ \text{Moles of } NH_3 = 10 \]<br /><br />Therefore, 15 moles of \( H_2 \) can produce 10 moles of \( NH_3 \).
Haz clic para calificar: