Problemas
18. A ball on a chain spins at 25m/s in a circular path with a radius of 60 meters. If the centripetal force of the ball is 550N, what is the mass of the ball?
Solución
Isaacmaestro · Tutor durante 5 años
Verificación de expertos
4.6 (265 votos)
Responder
To find the mass of the ball, we can use the formula for centripetal force:<br /><br />\[ F_c = \frac{mv^2}{r} \]<br /><br />where:<br />- \( F_c \) is the centripetal force,<br />- \( m \) is the mass of the ball,<br />- \( v \) is the velocity of the ball,<br />- \( r \) is the radius of the circular path.<br /><br />Given:<br />- \( F_c = 550 \, \text{N} \)<br />- \( v = 25 \, \text{m/s} \)<br />- \( r = 60 \, \text{m} \)<br /><br />We need to solve for \( m \):<br /><br />\[ m = \frac{F_c \cdot r}{v^2} \]<br /><br />Substitute the given values into the equation:<br /><br />\[ m = \frac{550 \, \text{N} \cdot 60 \, \text{m}}{(25 \, \text{m/s})^2} \]<br /><br />Calculate the denominator:<br /><br />\[ (25 \, \text{m/s})^2 = 625 \, \text{m}^2/\text{s}^2 \]<br /><br />Now, substitute back into the equation:<br /><br />\[ m = \frac{550 \, \text{N} \cdot 60 \, \text{m}}{625 \, \text{m}^2/\text{s}^2} \]<br /><br />\[ m = \frac{33000 \, \text{N} \cdot \text{m}}{625 \, \text{m}^2/\text{s}^2} \]<br /><br />\[ m = \frac{33000}{625} \, \text{kg} \]<br /><br />\[ m = 52.8 \, \text{kg} \]<br /><br />Therefore, the mass of the ball is \( 52.8 \, \text{kg} \).
Haz clic para calificar: