Problemas

11) through: (-4,0) slope=(3)/(4) A) y=(3)/(4)x+3 B) y=3x+(3)/(4) C) y=-3x+(3)/(4) D) y=(1)/(2)x+(3)/(4)
Solución

Diegomaestro · Tutor durante 5 años

4.3 (218 votos)
Responder
To find the equation of the line passing through the point $(-4,0)$ with a slope of $\frac{3}{4}$, we can use the point-slope form of a linear equation:<br /><br />$y - y_1 = m(x - x_1)$<br /><br />where $(x_1, y_1)$ is the given point and $m$ is the slope.<br /><br />Substituting the given values, we have:<br /><br />$y - 0 = \frac{3}{4}(x - (-4))$<br /><br />Simplifying this equation, we get:<br /><br />$y = \frac{3}{4}(x + 4)$<br /><br />Expanding the equation, we have:<br /><br />$y = \frac{3}{4}x + 3$<br /><br />Therefore, the correct answer is option A) $y = \frac{3}{4}x + 3$.
Haz clic para calificar: