Pagina de inicio
/
Física
/
An electric motor lifts an elevator 9 m in 15 s by exerting an upward force of 1.20times 100,000N What power does the motor produce in kW? Hint: Formula can be found in your textbook page 289 7.20 kW 8.20 kW 2.70 kW

Problemas

An electric motor lifts an elevator 9 m in 15 s by exerting an upward force of
1.20times 100,000N What power does the motor produce in kW?
Hint: Formula can be found in your textbook page 289
7.20 kW
8.20 kW
2.70 kW

An electric motor lifts an elevator 9 m in 15 s by exerting an upward force of 1.20times 100,000N What power does the motor produce in kW? Hint: Formula can be found in your textbook page 289 7.20 kW 8.20 kW 2.70 kW

Solución

avatar
Gabrielaélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.2 (274 votos)

Responder

Para calcular la potencia producida por el motor, podemos usar la fórmula:<br /><br />\[ \text{Potencia} = \frac{\text{Trabajo}}{\text{Tiempo}} \]<br /><br />El trabajo realizado por el motor se puede calcular como el producto de la fuerza aplicada y la distancia recorrida:<br /><br />\[ \text{Trabajo} = \text{Fuerza} \times \text{Distancia} \]<br /><br />Dado que la fuerza aplicada es \(1.20 \times 100,000 \, \text{N}\) y la distancia es \(9 \, \text{m}\), podemos calcular el trabajo:<br /><br />\[ \text{Trabajo} = 1.20 \times 100,000 \, \text{N} \times 9 \, \text{m} = 10,800,000 \, \text{J} \]<br /><br />Ahora, podemos calcular la potencia:<br /><br />\[ \text{Potencia} = \frac{10,800,000 \, \text{J}}{15 \, \text{s}} = 720,000 \, \text{W} \]<br /><br />Para convertir la potencia a kilovatios (kW), dividimos por 1,000:<br /><br />\[ \text{Potencia} = \frac{720,000 \, \text{W}}{1,000} = 720 \, \text{kW} \]<br /><br />Por lo tanto, la potencia producida por el motor es de 720 kW.
Haz clic para calificar: