Pagina de inicio
/
Matemáticas
/
int cotmxcsc^2mxdx 20.- int ((3x^2+2)dx)/(x-1) 2 int (dx)/(2xln3x)= int x^nsqrt (ax^n+1+b)dx int (1)/(x^3)sqrt (1-(1)/(x^2))dx int csc^23xcos3xdx int ((2)/((x+1)^3)-(3)/((x+1)^2)+(4)/(x+1))dx int ((3)/(2x-1)+(5)/(3x-4))dx int (senx)/(sqrt [3](cos^2)x)dx int sen^3xsen2xdx 29. int (3senycosy)/(sqrt (1-2sen^2)y)

Problemas

int cotmxcsc^2mxdx
20.- int ((3x^2+2)dx)/(x-1)
2 int (dx)/(2xln3x)=
int x^nsqrt (ax^n+1+b)dx
int (1)/(x^3)sqrt (1-(1)/(x^2))dx
int csc^23xcos3xdx
int ((2)/((x+1)^3)-(3)/((x+1)^2)+(4)/(x+1))dx
int ((3)/(2x-1)+(5)/(3x-4))dx
int (senx)/(sqrt [3](cos^2)x)dx
int sen^3xsen2xdx
29.
int (3senycosy)/(sqrt (1-2sen^2)y)

int cotmxcsc^2mxdx 20.- int ((3x^2+2)dx)/(x-1) 2 int (dx)/(2xln3x)= int x^nsqrt (ax^n+1+b)dx int (1)/(x^3)sqrt (1-(1)/(x^2))dx int csc^23xcos3xdx int ((2)/((x+1)^3)-(3)/((x+1)^2)+(4)/(x+1))dx int ((3)/(2x-1)+(5)/(3x-4))dx int (senx)/(sqrt [3](cos^2)x)dx int sen^3xsen2xdx 29. int (3senycosy)/(sqrt (1-2sen^2)y)

Solución

avatar
Isaacprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.0 (256 votos)

Responder

1. $\int cotmxcsc^{2}mxdx = -\frac{1}{m} \int \frac{dx}{x} = -\frac{1}{m} \ln|x| + C$<br />2. $\int \frac {(3x^{2}+2)dx}{x-1} = \int \frac{3x^2 + 2}{x-1} dx = \int (3x + \frac{5}{x-1}) dx = \frac{3}{2}x^2 + 5 \ln|x-1| + C$<br />3. $\int \frac {dx}{2xln3x} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} = \frac{1}{2} \int \frac{dx}{x \ln(3x)} =
Haz clic para calificar: