Problemas

. An object has a kinetic energy of 88 J and a mass of 45 kg , how fast is the object moving?
Solución

Claudiaveterano · Tutor durante 10 años

4.6 (115 votos)
Responder
To find the speed of the object, we can use the formula for kinetic energy:<br /><br />\[ KE = \frac{1}{2} m v^2 \]<br /><br />where \( KE \) is the kinetic energy, \( m \) is the mass, and \( v \) is the velocity. We need to solve for \( v \).<br /><br />Given:<br />- \( KE = 88 \, \text{J} \)<br />- \( m = 45 \, \text{kg} \)<br /><br />Plug these values into the formula:<br /><br />\[ 88 = \frac{1}{2} \times 45 \times v^2 \]<br /><br />First, multiply both sides by 2 to get rid of the fraction:<br /><br />\[ 176 = 45 \times v^2 \]<br /><br />Next, divide both sides by 45 to solve for \( v^2 \):<br /><br />\[ v^2 = \frac{176}{45} \]<br /><br />Calculate \( v^2 \):<br /><br />\[ v^2 \approx 3.9111 \]<br /><br />Finally, take the square root of both sides to find \( v \):<br /><br />\[ v \approx \sqrt{3.9111} \]<br /><br />\[ v \approx 1.98 \, \text{m/s} \]<br /><br />So, the object is moving at approximately 1.98 meters per second.
Haz clic para calificar: