Problemas
Find the product.Simplify your answer. (3k+2)(k+1) square
Solución
Deborahélite · Tutor durante 8 años
Verificación de expertos
4.2 (188 votos)
Responder
To find the product of \((3k+2)(k+1)\), we will use the distributive property (also known as the FOIL method for binomials). Here's the step-by-step process:<br /><br />1. **First**: Multiply the first terms in each binomial:<br /> \[<br /> 3k \cdot k = 3k^2<br /> \]<br /><br />2. **Outer**: Multiply the outer terms in the binomials:<br /> \[<br /> 3k \cdot 1 = 3k<br /> \]<br /><br />3. **Inner**: Multiply the inner terms in the binomials:<br /> \[<br /> 2 \cdot k = 2k<br /> \]<br /><br />4. **Last**: Multiply the last terms in each binomial:<br /> \[<br /> 2 \cdot 1 = 2<br /> \]<br /><br />Now, combine all these products:<br />\[<br />3k^2 + 3k + 2k + 2<br />\]<br /><br />Next, combine the like terms (\(3k\) and \(2k\)):<br />\[<br />3k^2 + 5k + 2<br />\]<br /><br />So, the simplified product of \((3k+2)(k+1)\) is:<br />\[<br />\boxed{3k^2 + 5k + 2}<br />\]
Haz clic para calificar: