Problemas
What is the value of x to this equation? x^2-10x+25=0 x=5 x=15 x=-5 x=10
Solución
Nicolásmaestro · Tutor durante 5 años
Verificación de expertos
4.2 (325 votos)
Responder
The given equation is a quadratic equation in the form of $ax^2 + bx + c = 0$, where $a = 1$, $b = -10$, and $c = 25$. To solve this equation, we can use the quadratic formula:<br /><br />$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$<br /><br />Substituting the values of $a$, $b$, and $c$ into the formula, we get:<br /><br />$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(25)}}{2(1)}$<br /><br />Simplifying the expression inside the square root, we have:<br /><br />$x = \frac{10 \pm \sqrt{100 - 100}}{2}$<br /><br />$x = \frac{10 \pm \sqrt{0}}{2}$<br /><br />$x = \frac{10 \pm 0}{2}$<br /><br />$x = \frac{10}{2}$<br /><br />$x = 5$<br /><br />Therefore, the value of $x$ that satisfies the equation $x^2 - 10x + 25 = 0$ is $x = 5$.
Haz clic para calificar: