Pagina de inicio
/
Matemáticas
/
Drag each polynomial function to its number of terms. d(x)=-x+3 z(x)=4x^2-1 m(x)=-2x^2+9x+4 c(x)=3x^3-x^2+5x- v(x)=5.5x w(x)=(1)/(2)x^3+(3)/(4)x^2+ (1)/(4)x b(x)=-5x^3-14 1 f(x)=-6 square 2 square 3 square 4

Problemas

Drag each polynomial function to its number of terms.
d(x)=-x+3
z(x)=4x^2-1
m(x)=-2x^2+9x+4
c(x)=3x^3-x^2+5x-
v(x)=5.5x
w(x)=(1)/(2)x^3+(3)/(4)x^2+
(1)/(4)x
b(x)=-5x^3-14
1
f(x)=-6
square 
2
square 
3
square 
4

Drag each polynomial function to its number of terms. d(x)=-x+3 z(x)=4x^2-1 m(x)=-2x^2+9x+4 c(x)=3x^3-x^2+5x- v(x)=5.5x w(x)=(1)/(2)x^3+(3)/(4)x^2+ (1)/(4)x b(x)=-5x^3-14 1 f(x)=-6 square 2 square 3 square 4

Solución

avatar
Paulaélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.4 (265 votos)

Responder

To determine the number of terms in each polynomial function, we need to count the number of terms separated by addition or subtraction.<br /><br />1. $d(x)=-x+3$ has 2 terms.<br />2. $z(x)=4x^{2}-1$ has 2 terms.<br />3. $m(x)=-2x^{2}+9x+4$ has 3 terms.<br />4. $c(x)=3x^{3}-x^{2}+5x-$ is incomplete and cannot be classified.<br />5. $v(x)=5.5x$ has 1 term.<br />6. $w(x)=\frac {1}{2}x^{3}+\frac {3}{4}x^{2}+$ is incomplete and cannot be classified.<br />7. $b(x)=-5x^{3}-14$ has 2 terms.<br />8. $f(x)=-6$ has 1 term.<br /><br />So, the correct answer is:<br />1. $d(x)=-x+3$, $z(x)=4x^{2}-1$, $b(x)=-5x^{3}-14$<br />2. $v(x)=5.5x$, $f(x)=-6$<br />3. $m(x)=-2x^{2}+9x+4$<br />4. $c(x)=3x^{3}-x^{2}+5x-$, $w(x)=\frac {1}{2}x^{3}+\frac {3}{4}x^{2}+$
Haz clic para calificar: