Problemas
Drag each polynomial function to its number of terms. d(x)=-x+3 z(x)=4x^2-1 m(x)=-2x^2+9x+4 c(x)=3x^3-x^2+5x- v(x)=5.5x w(x)=(1)/(2)x^3+(3)/(4)x^2+ (1)/(4)x b(x)=-5x^3-14 1 f(x)=-6 square 2 square 3 square 4
Solución
Paulaélite · Tutor durante 8 años
Verificación de expertos
4.4 (265 votos)
Responder
To determine the number of terms in each polynomial function, we need to count the number of terms separated by addition or subtraction.<br /><br />1. $d(x)=-x+3$ has 2 terms.<br />2. $z(x)=4x^{2}-1$ has 2 terms.<br />3. $m(x)=-2x^{2}+9x+4$ has 3 terms.<br />4. $c(x)=3x^{3}-x^{2}+5x-$ is incomplete and cannot be classified.<br />5. $v(x)=5.5x$ has 1 term.<br />6. $w(x)=\frac {1}{2}x^{3}+\frac {3}{4}x^{2}+$ is incomplete and cannot be classified.<br />7. $b(x)=-5x^{3}-14$ has 2 terms.<br />8. $f(x)=-6$ has 1 term.<br /><br />So, the correct answer is:<br />1. $d(x)=-x+3$, $z(x)=4x^{2}-1$, $b(x)=-5x^{3}-14$<br />2. $v(x)=5.5x$, $f(x)=-6$<br />3. $m(x)=-2x^{2}+9x+4$<br />4. $c(x)=3x^{3}-x^{2}+5x-$, $w(x)=\frac {1}{2}x^{3}+\frac {3}{4}x^{2}+$
Haz clic para calificar: