Pagina de inicio
/
Matemáticas
/
6. Which expression is equivalent to (16a^6bc^21)(b^10c)(-2a^6b^5c) for all values of a, b, and c where the expression is defined? Answer: - Choose the correct answer - Choose the correct answer 32a^22b^15c^21 -32a^12b^15c^21 -32a^12b^16c^23 -32a^22b^16c^23

Problemas

6. Which expression is equivalent to
(16a^6bc^21)(b^10c)(-2a^6b^5c)
for all values of a, b, and c where the expression is defined?
Answer: - Choose the correct answer -
Choose the correct answer
32a^22b^15c^21
-32a^12b^15c^21
-32a^12b^16c^23
-32a^22b^16c^23

6. Which expression is equivalent to (16a^6bc^21)(b^10c)(-2a^6b^5c) for all values of a, b, and c where the expression is defined? Answer: - Choose the correct answer - Choose the correct answer 32a^22b^15c^21 -32a^12b^15c^21 -32a^12b^16c^23 -32a^22b^16c^23

Solución

avatar
Ernestoélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.0 (300 votos)

Responder

To find the expression equivalent to $(16a^{6}bc^{21})(b^{10}c)(-2a^{6}b^{5}c)$, we need to multiply the terms together.<br /><br />First, let's multiply the coefficients:<br />$16 \times (-2) = -32$<br /><br />Next, let's multiply the variables with the same base by adding their exponents:<br />$a^{6} \times a^{6} = a^{12}$<br />$b \times b^{10} \times b^{5} = b^{16}$<br />$c^{21} \times c \times c = c^{23}$<br /><br />Putting it all together, we get:<br />$-32a^{12}b^{16}c^{23}$<br /><br />Therefore, the correct answer is $-32a^{12}b^{16}c^{23}$.
Haz clic para calificar: