Pagina de inicio
/
Matemáticas
/
Which value of 20 is a solution to this equation? (x+12)^2=81 x=-sqrt (93);x=sqrt (93) x=-sqrt (69);x=sqrt (69) x=-21;x=-3 x=3;x=21

Problemas

Which value of 20 is a solution to this equation?
(x+12)^2=81
x=-sqrt (93);x=sqrt (93)
x=-sqrt (69);x=sqrt (69)
x=-21;x=-3
x=3;x=21

Which value of 20 is a solution to this equation? (x+12)^2=81 x=-sqrt (93);x=sqrt (93) x=-sqrt (69);x=sqrt (69) x=-21;x=-3 x=3;x=21

Solución

avatar
Mónicaélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.2 (202 votos)

Responder

To solve the equation $(x+12)^{2}=81$, we need to find the values of $x$ that satisfy the equation.<br /><br />Step 1: Take the square root of both sides of the equation.<br />$(x+12)^{2}=81$<br />$x+12=\pm\sqrt{81}$<br />$x+12=\pm9$<br /><br />Step 2: Solve for $x$.<br />$x+12=9$ or $x+12=-9$<br />$x=9-12$ or $x=-9-12$<br />$x=-3$ or $x=-21$<br /><br />Therefore, the values of $x$ that are solutions to the equation $(x+12)^{2}=81$ are $x=-3$ and $x=-21$.
Haz clic para calificar: