Problemas
Solve the system of equations. y=x^2-12 The solution is square (Type an ordered/Bair Use a com for each coordinate, using radical
Solución
Héctormaestro · Tutor durante 5 años
Verificación de expertos
4.0 (348 votos)
Responder
To solve the system of equations, we need to find the values of x and y that satisfy both equations.<br /><br />Given equation: $y=x^{2}-12$<br /><br />We can rewrite this equation as $x^{2}=y+12$.<br /><br />Now, we need to find the values of x and y that satisfy this equation.<br /><br />Let's assume that x is a real number. Then, we can substitute different values of x into the equation and find the corresponding values of y.<br /><br />For example, if we substitute x=0 into the equation, we get $y=0^{2}-12=-12$.<br /><br />If we substitute x=1 into the equation, we get $y=1^{2}-12=-11$.<br /><br />If we substitute x=-1 into the equation, we get $y=(-1)^{2}-12=-11$.<br /><br />If we substitute x=2 into the equation, we get $y=2^{2}-12=-8$.<br /><br />If we substitute x=-2 into the equation, we get $y=(-2)^{2}-12=-8$.<br /><br />Therefore, the solutions to the system of equations are (0,-12), (1,-11), (-1,-11), (2,-8), and (-2,-8).
Haz clic para calificar: