Pagina de inicio
/
Matemáticas
/
Solve log4x+log2=log48 x=(23)/(2) x=8 x=(log48-log2)/(log4) x=6

Problemas

Solve log4x+log2=log48
x=(23)/(2)
x=8
x=(log48-log2)/(log4)
x=6

Solve log4x+log2=log48 x=(23)/(2) x=8 x=(log48-log2)/(log4) x=6

Solución

avatar
Ramónmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.4 (340 votos)

Responder

To solve the equation $log4x+log2=log48$, we can use the properties of logarithms to combine the terms on the left side:<br /><br />$log(4x) + log(2) = log(48)$<br /><br />Using the product rule of logarithms, we can combine the terms on the left side:<br /><br />$log(4x \cdot 2) = log(48)$<br /><br />Simplifying the left side, we have:<br /><br />$log(8x) = log(48)$<br /><br />Since the logarithms are equal, the arguments must be equal:<br /><br />$8x = 48$<br /><br />Dividing both sides by 8, we get:<br /><br />$x = 6$<br /><br />Therefore, the correct answer is $x = 6$.
Haz clic para calificar: