Pagina de inicio
/
Matemáticas
/
Is the inverse a function? g(x)=x+9 D yes no Write the inverse function in the form ax+b . Simplify any fractions. g^-1(x)=square

Problemas

Is the inverse a function?
g(x)=x+9
D yes
no
Write the inverse function in the form
ax+b . Simplify any fractions.
g^-1(x)=square

Is the inverse a function? g(x)=x+9 D yes no Write the inverse function in the form ax+b . Simplify any fractions. g^-1(x)=square

Solución

avatar
Brendaprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
3.8 (214 votos)

Responder

D yes<br />\(g^{-1}(x) = x - 9\)

Explicar

## Step 1 problem to determine if the inverse of the function \(g(x) = x + 9\) is also a function. To do this, we need to understand the concept of inverse functions. An inverse function is a function that undoes the operation of the original function. In other words, if the original function takes an input and produces an output, the inverse function takes that output and produces the original input.<br /><br />## Step 2<br />To find the inverse of a function, we swap the roles of \(x\) and \(y\) and solve for \(y\). In this case, we start with the function \(g(x) = x + 9\). We can rewrite this as \(y = x + 9\).<br /><br />## Step 3<br />Next, we swap \(x\) and \(y\) to get \(x = y + 9\).<br /><br />## Step 4<br />Finally, we solve for \(y\) to get the inverse function. Subtracting 9 from both sides gives us \(y = x - 9\).
Haz clic para calificar: