Pagina de inicio
/
Matemáticas
/
97. Which of the following represents all possible solutions for y if 3y-7gt 8 A) ylt 3 B) ygt 3 C) ylt 5 D) ygt 5 98. How many numbers between 20 and 70 (inclusive) meet both conditions below? Statement 1: The number is prime. Statement 2: The product of the digits is 6. A) 2 B) 3 C) 6 D) 11 99. What is the simplified form of the expression 5x^2-4x+2-(3x^2+5x-1) A) -15x^2-20x-2 B) -15x^2+20x+2 C) 2x^2-9x+1 D) 2x^2-9x+3

Problemas

97. Which of the following represents all possible solutions for y if 3y-7gt 8
A) ylt 3
B) ygt 3
C) ylt 5
D) ygt 5
98. How many numbers between 20 and 70 (inclusive) meet both conditions below?
Statement 1: The number is prime.
Statement 2: The product of the digits is 6.
A) 2
B) 3
C) 6
D) 11
99. What is the simplified form of the expression 5x^2-4x+2-(3x^2+5x-1)
A) -15x^2-20x-2
B) -15x^2+20x+2
C) 2x^2-9x+1
D) 2x^2-9x+3

97. Which of the following represents all possible solutions for y if 3y-7gt 8 A) ylt 3 B) ygt 3 C) ylt 5 D) ygt 5 98. How many numbers between 20 and 70 (inclusive) meet both conditions below? Statement 1: The number is prime. Statement 2: The product of the digits is 6. A) 2 B) 3 C) 6 D) 11 99. What is the simplified form of the expression 5x^2-4x+2-(3x^2+5x-1) A) -15x^2-20x-2 B) -15x^2+20x+2 C) 2x^2-9x+1 D) 2x^2-9x+3

Solución

avatar
Gabrielprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.3 (162 votos)

Responder

Let's solve each question one by one:<br /><br />**97. Solve the inequality \(3y - 7 > 8\):**<br /><br />1. Add 7 to both sides:<br /> \[<br /> 3y > 15<br /> \]<br /><br />2. Divide both sides by 3:<br /> \[<br /> y > 5<br /> \]<br /><br />The correct answer is **D) \(y > 5\)**.<br /><br />---<br /><br />**98. Find numbers between 20 and 70 that are prime and have a product of digits equal to 6:**<br /><br />- **Prime Numbers between 20 and 70:** 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67<br /><br />- **Numbers with a product of digits equal to 6:**<br /> - Consider two-digit numbers where the product of the digits equals 6:<br /> - Possible pairs: (1, 6), (2, 3), (3, 2), (6, 1)<br /> - Corresponding numbers: 16, 23, 32, 61<br /><br />- **Intersection of Prime Numbers and Product Condition:**<br /> - From the list above, only 23 and 61 are prime.<br /><br />Thus, there are **2** numbers that meet both conditions. The correct answer is **A) 2**.<br /><br />---<br /><br />**99. Simplify the expression \(5x^{2} - 4x + 2 - (3x^{2} + 5x - 1)\):**<br /><br />1. Distribute the negative sign:<br /> \[<br /> 5x^{2} - 4x + 2 - 3x^{2} - 5x + 1<br /> \]<br /><br />2. Combine like terms:<br /> - \(5x^{2} - 3x^{2} = 2x^{2}\)<br /> - \(-4x - 5x = -9x\)<br /> - \(2 + 1 = 3\)<br /><br />The simplified form is \(2x^{2} - 9x + 3\).<br /><br />The correct answer is **D) \(2x^{2} - 9x + 3\)**.
Haz clic para calificar: