Pagina de inicio
/
Matemáticas
/
A particle travels along the x-axis such that its velocity is given by v(t)=t^1.8sin(3t) . What is the distance traveled by the particle over the interval 0leqslant tleqslant 5 ? You may use a calculator and round your answer to the nearest thousandth.

Problemas

A particle travels along the x-axis such
that its velocity is given by
v(t)=t^1.8sin(3t) . What is the
distance traveled by the particle over
the interval 0leqslant tleqslant 5 ? You may use a
calculator and round your answer to the
nearest thousandth.

A particle travels along the x-axis such that its velocity is given by v(t)=t^1.8sin(3t) . What is the distance traveled by the particle over the interval 0leqslant tleqslant 5 ? You may use a calculator and round your answer to the nearest thousandth.

Solución

avatar
María Fernandaveterano · Tutor durante 12 años
expert verifiedVerificación de expertos
4.5 (212 votos)

Responder

Para encontrar la distancia recorrida por la partícula en el intervalo \(0 \leq t \leq 5\), necesitamos integrar la velocidad con respecto al tiempo. La fórmula para la distancia es:<br /><br />\[ \text{Distancia} = \int_{0}^{5} v(t) \, dt \]<br /><br />Dado que la velocidad \(v(t) = t^{1.8} \sin(3t)\), podemos calcular la integral:<br /><br />\[ \text{Distancia} = \int_{0}^{5} t^{1.8} \sin(3t) \, dt \]<br /><br />Para resolver esta integral, podemos usar una técnica de integración por partes. Sea \(u = t^{1.8}\) y \(dv = \sin(3t) \, dt\). Entonces, \(du = 1.8t^{0.8} \, dt\) y \(v = -\frac{1}{3} \cos(3t)\).<br /><br />Aplicando la fórmula de integración por partes:<br /><br />\[ \int_{0}^{5} t^{1.8} \sin(3t) \, dt = \left[ -\frac{1}{3} t^{1.8} \cos(3t) \right]_{0}^{5} + \int_{0}^{5} \frac{1.8t^{0.8}}{3} \cos(3t) \, dt \]<br /><br />Simplificando la integral:<br /><br />\[ \text{Distancia} = \left[ -\frac{1}{3} t^{1.8} \cos(3t) \right]_{0}^{5} + \frac{1.8}{3} \int_{0}^{5} t^{0.8} \cos(3t) \, dt \]<br /><br />\[ \text{Distancia} = \left[ -\frac{1}{3} t^{1.8} \cos(3t) \right]_{0}^{5} + 0.6 \int_{0}^{5} t^{0.8} \cos(3t) \, dt \]<br /><br />\[ \text{Distancia} = \left[ -\frac{1}{3} \cdot 5^{1.8} \cos(15) + \frac{1}{3} \cdot 0^{1.8} \cos(0) \right] + 0.6 \int_{0}^{5} t^{0.8} \cos(3t) \, dt \]<br /><br />\[ \text{Distancia} = \left[ -\frac{1}{3} \cdot 5^{1.8} \cos(15) \right] + 0.6 \int_{0}^{5} t^{0.8} \cos(3t) \, dt \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + 0.6 \int_{0}^{5} t^{0.8} \cos(3t) \, dt \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + 0.6 \left[ \frac{t^{0.8} \sin(3t)}{3} \right]_{0}^{5} \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + 0.2 \left[ \frac{5^{0.8} \sin(15)}{3} - \frac{0^{0.8} \sin(0)}{3} \right] \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + 0.2 \cdot \frac{5^{0.8} \sin(15)}{3} \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + \frac{0.2 \cdot 5^{0.8} \sin(15)}{3} \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{1.8} \cos(15) + \frac{0.2 \cdot 5^{0.8} \sin(15)}{3} \]<br /><br />\[ \text{Distancia} = -\frac{1}{3} \cdot 5^{
Haz clic para calificar: