Pagina de inicio
/
Matemáticas
/
ill in the blank to complete the trigonometric formula. 8sin(u)+cos(u)_(times )=(8sin(u))/(1+cos(u))

Problemas

ill in the blank to complete the trigonometric formula.
8sin(u)+cos(u)_(times )=(8sin(u))/(1+cos(u))

ill in the blank to complete the trigonometric formula. 8sin(u)+cos(u)_(times )=(8sin(u))/(1+cos(u))

Solución

avatar
Saulmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.3 (191 votos)

Responder

To fill in the blank and complete the trigonometric formula, we need to find the value that should be placed in the blank to make the equation true.<br /><br />Given equation: $8\sin(u) + \cos(u)_{\times} = \frac{8\sin(u)}{1 + \cos(u)}$<br /><br />To solve this, we can use the trigonometric identity $\sin^2(u) + \cos^2(u) = 1$.<br /><br />Let's rewrite the equation as:<br />$8\sin(u) + \cos(u)_{\times} = \frac{8\sin(u)}{1 + \cos(u)}$<br /><br />Now, let's multiply both sides of the equation by $(1 + \cos(u))$ to eliminate the denominator on the right side:<br />$(8\sin(u) + \cos(u)_{\times})(1 + \cos(u)) = 8\sin(u)$<br /><br />Expanding the left side, we get:<br />$8\sin(u) + 8\sin(u)\cos(u) + \cos(u) + \cos^2(u)_{\times} = 8\sin(u)$<br /><br />Now, let's simplify the equation by combining like terms:<br />$8\sin(u) + 8\sin(u)\cos(u) + \cos(u) + \cos^2(u)_{\times} - 8\sin(u) = 0$<br /><br />Simplifying further, we get:<br />$8\sin(u)\cos(u) + \cos(u) + \cos^2(u)_{\times} = 0$<br /><br />Now, let's factor out $\cos(u)$ from the first two terms:<br />$\cos(u)(8\sin(u) + 1) + \cos^2(u)_{\times} = 0$<br /><br />To make the equation true, the blank should be filled with $-8\sin(u)$.<br /><br />Therefore, the completed trigonometric formula is:<br />$8\sin(u) + \cos(u)_{\times} = \frac{8\sin(u)}{1 + \cos(u)}$<br /><br />So, the value that should be placed in the blank is $-8\sin(u)$.
Haz clic para calificar: