Problemas

Bellringer 13 (6x)/(5x^2)y+(2)/(4)
Solución

Gisellemaestro · Tutor durante 5 años

4.2 (230 votos)
Responder
To simplify the expression $\frac {6x}{5x^{2}y}+\frac {2}{4}$, we need to follow these steps:<br /><br />1. Simplify the first fraction:<br /> $\frac {6x}{5x^{2}y} = \frac {6}{5xy}$<br /><br />2. Simplify the second fraction:<br /> $\frac {2}{4} = \frac {1}{2}$<br /><br />3. Add the two fractions:<br /> $\frac {6}{5xy} + \frac {1}{2}$<br /><br />4. Find a common denominator for the two fractions:<br /> The common denominator is $10xy$.<br /><br />5. Rewrite the fractions with the common denominator:<br /> $\frac {6}{5xy} = \frac {12}{10xy}$<br /> $\frac {1}{2} = \frac {5}{10xy}$<br /><br />6. Add the fractions:<br /> $\frac {12}{10xy} + \frac {5}{10xy} = \frac {17}{10xy}$<br /><br />Therefore, the simplified expression is $\frac {17}{10xy}$.
Haz clic para calificar: