Problemas

2. Which expression is equivalent to s^3-1 ? A (s+1)(s^2-s+1) B. (s-1)(s^2-s+1) c (s-1)(s^2-s-1) D. (s-1)(s^2+s+1)
Solución

Jorgeélite · Tutor durante 8 años

4.2 (183 votos)
Responder
To find the expression equivalent to $s^{3}-1$, we can use the difference of cubes formula.<br /><br />The difference of cubes formula states that $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$.<br /><br />In this case, we have $s^{3} - 1$, which can be written as $s^{3} - 1^{3}$.<br /><br />Using the difference of cubes formula, we can rewrite it as $(s - 1)(s^{2} + s \cdot 1 + 1^{2})$.<br /><br />Simplifying further, we get $(s - 1)(s^{2} + s + 1)$.<br /><br />Therefore, the expression equivalent to $s^{3} - 1$ is $(s - 1)(s^{2} + s + 1)$.<br /><br />So, the correct answer is D. $(s-1)(s^{2}+s+1)$.
Haz clic para calificar: