Problemas

How many radians are in 1 degree? A (180)/(pi ) B. (pi )/(180) C. (pi )/(360) D. (360)/(pi )
Solución

Gregorioprofessionell · Tutor durante 6 años

4.4 (335 votos)
Responder
The correct answer is B. $\frac{\pi}{180}$.<br /><br />To convert degrees to radians, we need to multiply the degree measure by the conversion factor $\frac{\pi}{180}$. This is because there are $\pi$ radians in 180 degrees.<br /><br />So, to find how many radians are in 1 degree, we multiply 1 degree by the conversion factor $\frac{\pi}{180}$:<br /><br />$1 \text{ degree} \times \frac{\pi}{180} = \frac{\pi}{180} \text{ radians}$<br /><br />Therefore, there are $\frac{\pi}{180}$ radians in 1 degree.
Haz clic para calificar: