Problemas

What is the measure of 120^circ in radians? A. (pi )/(3) B (2pi )/(3) C. (4pi )/(3) D. (8pi )/(3)
Solución

Asunciónélite · Tutor durante 8 años

4.6 (295 votos)
Responder
To convert degrees to radians, we use the conversion factor $\frac{\pi \text{ radians}}{180^\circ}$. Let's apply this to convert $120^\circ$ to radians.<br /><br />\[<br />120^\circ \times \frac{\pi \text{ radians}}{180^\circ} = \frac{120\pi}{180} \text{ radians}<br />\]<br /><br />Simplify the fraction:<br /><br />\[<br />\frac{120\pi}{180} = \frac{2\pi}{3} \text{ radians}<br />\]<br /><br />Therefore, the measure of $120^\circ$ in radians is $\frac{2\pi}{3}$.<br /><br />The correct answer is:<br />B. $\frac{2\pi}{3}$
Haz clic para calificar: