Pagina de inicio
/
Matemáticas
/
b. What are the two binomial factors for k^2-3k-28 ? k^2-3k-28=( )( )

Problemas

b. What are the two binomial factors for k^2-3k-28 ?
k^2-3k-28=( )( )

b. What are the two binomial factors for k^2-3k-28 ? k^2-3k-28=( )( )

Solución

avatar
Albertoveterano · Tutor durante 12 años
expert verifiedVerificación de expertos
3.7 (245 votos)

Responder

<br /><br />To factor the quadratic expression $k^{2}-3k-28$, we need to find two numbers that multiply to give the product of the coefficient of $k^{2}$ (which is 1) and the constant term (which is -28), and add up to give the coefficient of $k$ (which is -3).<br /><br />The two numbers that satisfy these conditions are -7 and 4, because:<br />\[<br />-7 \times 4 = -28 \quad \text{and} \quad -7 + 4 = -3<br />\]<br /><br />Therefore, the quadratic expression can be factored as:<br />\[<br />k^{2}-3k-28 = (k-7)(k+4)<br />\]<br /><br />So, the two binomial factors for $k^{2}-3k-28$ are $(k-7)$ and $(k+4)$.
Haz clic para calificar: