Problemas
Which expression is equal to 9? A. (3^(1)/(3))^3 B. (6^(1)/(2))^2 C. (9^(1)/(4))^4 D. (27^(1)/(3))^3
Solución
Miguelmaestro · Tutor durante 5 años
Verificación de expertos
4.2 (254 votos)
Responder
To determine which expression is equal to 9, we need to evaluate each option.<br /><br />A. $(3^{\frac {1}{3}})^{3}$<br /> This expression simplifies to $3^{\frac {1}{3} \cdot 3} = 3^1 = 3$, which is not equal to 9.<br /><br />B. $(6^{\frac {1}{2}})^{2}$<br /> This expression simplifies to $6^{\frac {1}{2} \cdot 2} = 6^1 = 6$, which is not equal to 9.<br /><br />C. $(9^{\frac {1}{4}})^{4}$<br /> This expression simplifies to $9^{\frac {1}{4} \cdot 4} = 9^1 = 9$, which is equal to 9.<br /><br />D. $(27^{\frac {1}{3}})^{3}$<br /> This expression simplifies to $27^{\frac {1}{3} \cdot 3} = 27^1 = 27$, which is not equal to 9.<br /><br />Therefore, the correct answer is C. $(9^{\frac {1}{4}})^{4}$.
Haz clic para calificar: