Pagina de inicio
/
Matemáticas
/
Factor out the greatest common factor. If the greatest common factor is 1, just retype the polynomial. 2k^3-10k^2 square

Problemas

Factor out the greatest common factor. If the greatest common factor is 1, just retype the
polynomial.
2k^3-10k^2
square

Factor out the greatest common factor. If the greatest common factor is 1, just retype the polynomial. 2k^3-10k^2 square

Solución

avatar
Rafaelprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.2 (164 votos)

Responder

To factor out the greatest common factor from the polynomial \(2k^3 - 10k^2\), we first identify the greatest common factor (GCF) of the terms.<br /><br />The terms are \(2k^3\) and \(10k^2\).<br /><br />1. The coefficients are 2 and 10. The GCF of 2 and 10 is 2.<br />2. The variable part is \(k^3\) and \(k^2\). The GCF of \(k^3\) and \(k^2\) is \(k^2\).<br /><br />So, the GCF of the polynomial \(2k^3 - 10k^2\) is \(2k^2\).<br /><br />Now, we factor out \(2k^2\) from each term:<br /><br />\[ 2k^3 - 10k^2 = 2k^2(k) - 2k^2(5) \]<br /><br />This simplifies to:<br /><br />\[ 2k^3 - 10k^2 = 2k^2(k - 5) \]<br /><br />Therefore, the factored form of the polynomial is:<br /><br />\[ \boxed{2k^2(k - 5)} \]
Haz clic para calificar: