Problemas
-4
D yes
no
Write the inverse function in the form
a(bx+c)^3+d , where a, b , c, and d are
constants . Simplify any fractions.
h^-1(x)=square](https://static.questionai.mx/resource%2Fqaiseoimg%2F202502%2Finverse-functionhxsqrt-3x4d-yesnowrite-inverse-function-tcanO3vvye0I.jpg?x-oss-process=image/resize,w_600,h_600/quality,q_50/format,webp)
Is the inverse a function? h(x)=sqrt [3](x)-4 D yes no Write the inverse function in the form a(bx+c)^3+d , where a, b , c, and d are constants . Simplify any fractions. h^-1(x)=square
Solución

Amandaélite · Tutor durante 8 años

4.1 (239 votos)
Responder
The inverse function is \(h^{-1}(x) = (x + 4)^3\).
Explicar
## Step 1<br />The given function is \(h(x) = \sqrt[3]{x} - 4\). To find the inverse of this function, we first replace \(h(x)\) with \(y\), which gives us \(y = \sqrt[3]{x} - 4\).<br /><br />## Step 2<br />Next, we swap \(x\) and \(y\) to get \(x = \sqrt[3]{y} - 4\).<br /><br />## Step 3<br />Now, we solve for \(y\) to find the inverse function. We start by adding 4 to both sides of the equation to isolate the cube root term on one side. This gives us \(x + 4 = \sqrt[3]{y}\).<br /><br />## Step 4<br />To get rid of the cube root, we cube both sides of the equation, which gives us \((x + 4)^3 = y\).<br /><br />## Step 5<br />Finally, we replace \(y\) with \(h^{-1}(x)\) to get the inverse function. This gives us \(h^{-1}(x) = (x + 4)^3\).
Haz clic para calificar: