Problemas

Find the product. Simplify your answer. (n-2)(n+1) square
Solución

Ricardoélite · Tutor durante 8 años

4.1 (298 votos)
Responder
To find the product of \((n-2)(n+1)\), we will use the distributive property (also known as the FOIL method for binomials). Here's the step-by-step process:<br /><br />1. **First**: Multiply the first terms in each binomial:<br /> \[<br /> n \cdot n = n^2<br /> \]<br /><br />2. **Outer**: Multiply the outer terms in the binomials:<br /> \[<br /> n \cdot 1 = n<br /> \]<br /><br />3. **Inner**: Multiply the inner terms in the binomials:<br /> \[<br /> -2 \cdot n = -2n<br /> \]<br /><br />4. **Last**: Multiply the last terms in each binomial:<br /> \[<br /> -2 \cdot 1 = -2<br /> \]<br /><br />Now, combine all these products:<br />\[<br />n^2 + n - 2n - 2<br />\]<br /><br />Next, combine the like terms (\(n\) and \(-2n\)):<br />\[<br />n^2 + n - 2n - 2 = n^2 - n - 2<br />\]<br /><br />So, the simplified product of \((n-2)(n+1)\) is:<br />\[<br />\boxed{n^2 - n - 2}<br />\]
Haz clic para calificar: