Pagina de inicio
/
Matemáticas
/
Parallelograms RSTV is a parallelogram. overline (RT) and overline (SV) intersect at Q. RQ=5x+1 and QT=3x+15 Find QT. x=square QT=square

Problemas

Parallelograms
RSTV is a parallelogram. overline (RT) and overline (SV) intersect at Q. RQ=5x+1 and
QT=3x+15 Find QT.
x=square 
QT=square

Parallelograms RSTV is a parallelogram. overline (RT) and overline (SV) intersect at Q. RQ=5x+1 and QT=3x+15 Find QT. x=square QT=square

Solución

avatar
Barbaraveterano · Tutor durante 10 años
expert verifiedVerificación de expertos
4.0 (230 votos)

Responder

To solve this problem, we need to use the properties of a parallelogram and the given information about the lengths of the segments.<br /><br />Given information:<br />- RSTV is a parallelogram.<br />- $\overline{RT}$ and $\overline{SV}$ intersect at Q.<br />- $RQ = 5x + 1$<br />- $QT = 3x + 15$<br /><br />Step 1: Use the property that the diagonals of a parallelogram bisect each other.<br />Since RSTV is a parallelogram, the diagonals RT and SV bisect each other at point Q. This means that $RQ = QT$.<br /><br />Step 2: Set up an equation using the given expressions for $RQ$ and $QT$.<br />$RQ = QT$<br />$5x + 1 = 3x + 15$<br /><br />Step 3: Solve the equation for $x$.<br />$5x + 1 = 3x + 15$<br />$2x = 14$<br />$x = 7$<br /><br />Step 4: Substitute the value of $x$ into the expression for $QT$ to find its length.<br />$QT = 3x + 15$<br />$QT = 3(7) + 15$<br />$QT = 21 + 15$<br />$QT = 36$<br /><br />Therefore, the value of $x$ is 7, and the length of $QT$ is 36.
Haz clic para calificar: