Pagina de inicio
/
Matemáticas
/
What is the domain for the rational function y=(2)/(x+4)-7 ? A. (-infty ,-4)cup (-4,infty ) B. (-infty ,7)cup (7,infty ) C. (-infty ,-7)cup (-7,infty ) D (-infty ,4)cup (4,infty )

Problemas

What is the domain for the rational function y=(2)/(x+4)-7 ?
A. (-infty ,-4)cup (-4,infty )
B. (-infty ,7)cup (7,infty )
C. (-infty ,-7)cup (-7,infty )
D (-infty ,4)cup (4,infty )

What is the domain for the rational function y=(2)/(x+4)-7 ? A. (-infty ,-4)cup (-4,infty ) B. (-infty ,7)cup (7,infty ) C. (-infty ,-7)cup (-7,infty ) D (-infty ,4)cup (4,infty )

Solución

avatar
Anastasiaprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.2 (246 votos)

Responder

<br />The domain of a rational function is all real numbers except for those that make the denominator zero. In this case, the denominator is $x+4$. <br /><br />To find the values that make the denominator zero, we set the denominator equal to zero and solve for $x$:<br /><br />$x+4=0$<br /><br />$x=-4$<br /><br />So, the value that makes the denominator zero is $x=-4$. <br /><br />Therefore, the domain of the function $y=\frac {2}{x+4}-7$ is all real numbers except $x=-4$. <br /><br />In interval notation, this is written as $(-\infty,-4)\cup (-4,\infty )$. <br /><br />So, the correct answer is A. $(-\infty,-4)\cup (-4,\infty )$.
Haz clic para calificar: