Problemas

Solve: 3x-3y=15 __ __ inno __ 2. __ Answer: (
Solución

Lucreciamaestro · Tutor durante 5 años

4.3 (281 votos)
Responder
To solve the equation \(3x - 3y = 15\), we can follow these steps:<br /><br />1. Isolate the variable \(y\) on one side of the equation.<br />2. Simplify the equation to find the relationship between \(x\) and \(y\).<br /><br />Step 1: Isolate \(y\)<br />\[3x - 3y = 15\]<br />Subtract \(3x\) from both sides:<br />\[-3y = 15 - 3x\]<br />Divide both sides by \(-3\):<br />\[y = \frac{15 - 3x}{-3}\]<br />Simplify the expression:<br />\[y = -5 + x\]<br /><br />Step 2: Simplify the equation<br />The simplified equation is:<br />\[y = x - 5\]<br /><br />This equation represents a linear relationship between \(x\) and \(y\). For any given value of \(x\), we can find the corresponding value of \(y\) by substituting it into the equation.<br /><br />For example, if \(x = 10\), then:<br />\[y = 10 - 5 = 5\]<br /><br />So, when \(x = 10\), \(y = 5\).<br /><br />Therefore, the solution to the equation \(3x - 3y = 15\) is \(y = x - 5\).
Haz clic para calificar: