Pagina de inicio
/
Matemáticas
/
Give the excluded values for (6)/(t+5)+(2)/(t-5)=(3t-1)/(t^2)-25 Do not solve. -5 , 5 5,25 25 -5,5,25

Problemas

Give the excluded values for (6)/(t+5)+(2)/(t-5)=(3t-1)/(t^2)-25 Do not solve.
-5 , 5
5,25
25
-5,5,25

Give the excluded values for (6)/(t+5)+(2)/(t-5)=(3t-1)/(t^2)-25 Do not solve. -5 , 5 5,25 25 -5,5,25

Solución

avatar
Yahirmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.0 (209 votos)

Responder

The correct answer is $-5,5,25$.<br /><br />Explanation:<br />The excluded values are the values of $t$ that make the denominators of the fractions equal to zero. In this case, the denominators are $t+5$, $t-5$, and $t^2-25$. <br /><br />To find the excluded values, we need to set each denominator equal to zero and solve for $t$.<br /><br />1. $t+5=0$ gives $t=-5$<br />2. $t-5=0$ gives $t=5$<br />3. $t^2-25=0$ gives $t^2=25$, which means $t=\pm5$<br /><br />Therefore, the excluded values are $-5$, $5$, and $25$.
Haz clic para calificar: