Problemas
8. Which expression is equivalent to (c^8(d^6)^3)/(c^2) for all values of c and d where the expression is defined? Answer: - Choose the correct answer - Choose the correct answer- c^4d^9 c^4d^18 c^6d^9 c^6d^18
Solución
Danielélite · Tutor durante 8 años
Verificación de expertos
4.0 (222 votos)
Responder
To simplify the expression $\frac {c^{8}(d^{6})^{3}}{c^{2}}$, we can use the properties of exponents.<br /><br />First, let's simplify the numerator:<br />$(d^{6})^{3} = d^{6 \cdot 3} = d^{18}$<br /><br />Now, we can rewrite the expression as:<br />$\frac {c^{8}d^{18}}{c^{2}}$<br /><br />Next, we can simplify the fraction by dividing the exponents of c:<br />$\frac {c^{8}d^{18}}{c^{2}} = c^{8-2}d^{18} = c^{6}d^{18}$<br /><br />Therefore, the expression equivalent to $\frac {c^{8}(d^{6})^{3}}{c^{2}}$ is $c^{6}d^{18}$.<br /><br />So, the correct answer is $c^{6}d^{18}$.
Haz clic para calificar: