Pagina de inicio
/
Matemáticas
/
Question Write the logarithmic equation as an exponential equation. log_(2)((1)/(128))=-7 Answer Ameptiout of

Problemas

Question
Write the logarithmic equation as an exponential equation.
log_(2)((1)/(128))=-7
Answer Ameptiout of

Question Write the logarithmic equation as an exponential equation. log_(2)((1)/(128))=-7 Answer Ameptiout of

Solución

avatar
Irenemaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.1 (173 votos)

Responder

\(2^{-7} = \frac{1}{128}\)

Explicar

## Step 1<br />The given equation is in logarithmic form. The general form of a logarithmic equation is \(log_b(a) = c\), where \(b\) is the base, \(a\) is the argument, and \(c\) is the result.<br /><br />## Step 2<br />In the given equation, \(log_2(\frac{1}{128}) = -7\), the base \(b\) is 2, the argument \(a\) is \(\frac{1}{128}\), and the result \(c\) is -7.<br /><br />## Step 3<br />To convert this logarithmic equation into an exponential equation, we use the formula \(b^c = a\).<br /><br />## Step 4<br />Substituting the values of \(b\), \(a\), and \(c\) into the formula, we get \(2^{-7} = \frac{1}{128}\).
Haz clic para calificar: