Pagina de inicio
/
Matemáticas
/
(B.16)Calcular el área que encierran la funciones: y=(1)/(x^2) y=0 x=1 x=5

Problemas

(B.16)Calcular el área que encierran la funciones:
y=(1)/(x^2)
y=0
x=1
x=5

(B.16)Calcular el área que encierran la funciones: y=(1)/(x^2) y=0 x=1 x=5

Solución

avatar
Diegoveterano · Tutor durante 11 años
expert verifiedVerificación de expertos
3.4 (235 votos)

Responder

Para calcular el área encerrada por las funciones dadas, primero necesitamos encontrar los puntos de intersección de las curvas. En este caso, las curvas son $y=\frac{1}{x^2}$, $y=0$, $x=1$ y $x=5$.<br /><br />La curva $y=\frac{1}{x^2}$ intersecta el eje x en el origen (0,0). Sin embargo, las líneas verticales $x=1$ y $x=5$ no intersectan con esta curva, ya que $y=\frac{1}{x^2}$ no está definida para $x=1$ y $x=5$.<br /><br />Por lo tanto, el área encerrada por estas funciones es el área bajo la curva $y=\frac{1}{x^2}$ desde $x=1$ hasta $x=5$, excluyendo el origen.<br /><br />Para calcular este área, podemos usar la integral definida:<br /><br />$A = \int_{1}^{5} \frac{1}{x^2} \, dx$<br /><br />Integrando, obtenemos:<br /><br />$A = \left[ -\frac{1}{x} \right]_{1}^{5} = -\frac{1}{5} - (-1) = 1 - \frac{1}{5} = \frac{4}{5}$<br /><br />Por lo tanto, el área encerrada por las funciones dadas es $\frac{4}{5}$.
Haz clic para calificar: