Pagina de inicio
/
Matemáticas
/
Multiple Choice 10 points n^2-6n+8 (n-4)(n+2) (n+10)(n-9) Not factorable (n-4)(n-2)

Problemas

Multiple Choice 10 points
n^2-6n+8
(n-4)(n+2)
(n+10)(n-9)
Not factorable
(n-4)(n-2)

Multiple Choice 10 points n^2-6n+8 (n-4)(n+2) (n+10)(n-9) Not factorable (n-4)(n-2)

Solución

avatar
Juanveterano · Tutor durante 9 años
expert verifiedVerificación de expertos
4.0 (158 votos)

Responder

To factor the quadratic expression \( n^2 - 6n + 8 \), we need to find two numbers that multiply to 8 (the constant term) and add up to -6 (the coefficient of the linear term).<br /><br />Let's find these numbers:<br /><br />1. The product of the two numbers should be 8.<br />2. The sum of the two numbers should be -6.<br /><br />The numbers that satisfy these conditions are -2 and -4 because:<br />- \((-2) \times (-4) = 8\)<br />- \((-2) + (-4) = -6\)<br /><br />So, we can factor the quadratic expression as:<br />\[ n^2 - 6n + 8 = (n - 2)(n - 4) \]<br /><br />Therefore, the correct answer is:<br />\[ (n - 4)(n - 2) \]<br /><br />So, the correct choice is:<br />\[ (n-4)(n-2) \]
Haz clic para calificar: