Problemas
Convert Exponential Equation to Log (Numeric) Question Write the exponential equation as a logarithmic equation. 7^(1)/(3)=sqrt [3](7) Answer Attemptiout of 2 square
Solución
Ivánprofessionell · Tutor durante 6 años
Verificación de expertos
4.0 (265 votos)
Responder
To convert the exponential equation \(7^{\frac{1}{3}} = \sqrt[3]{7}\) to a logarithmic equation, we need to understand the relationship between exponents and logarithms.<br /><br />The general form of an exponential equation is:<br />\[ a^b = c \]<br /><br />This can be rewritten in logarithmic form as:<br />\[ \log_a(c) = b \]<br /><br />In your specific equation:<br />\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \]<br /><br />We can see that:<br />- The base \(a\) is 7.<br />- The exponent \(b\) is \(\frac{1}{3}\).<br />- The result \(c\) is \(\sqrt[3]{7}\).<br /><br />Using the logarithmic form, we get:<br />\[ \log_7(\sqrt[3]{7}) = \frac{1}{3} \]<br /><br />So, the exponential equation \(7^{\frac{1}{3}} = \sqrt[3]{7}\) can be written as the logarithmic equation:<br />\[ \log_7(\sqrt[3]{7}) = \frac{1}{3} \]
Haz clic para calificar: